Omaha Public Power District Fuel Cell Energy at the Henry Doorly Zoo

Lee Harrow, OPPD
Federal Utility Partnership Working
Group
April 17, 2002

History of Fuel Cell Technology

- First Fuel Cell developed in 1839 by Sir William Grove
- First practical use space program in 1960's
- UTC Fuel Cells PC25 commercial units available since mid-1990's
- Over 200 units currently in operation worldwide

Henry Doorly Zoo Project Summary

- Installed as a technology demonstration
- Model PC25C fuel cell commissioned on 8/8/01
- Supplied by UTC Fuel Cell East Windsor, Connecticut
- Installed at Lied Jungle
- 200 kW unit serves 50% of power needs of Lied Jungle
- Installation Complete August, 2001

Design Objectives

- Supply power to critical Jungle systems
- OPPD grid is backup power
- Low temp heat used to temper cold water
- High temp heat used to supplement boilers

How it works

How it works

- Hydrogen is removed from NG
- Hydrogen protons pass through cell membrane
- Electrons pass around membrane creating DC circuit
- Oxygen combines with hydrogen protons to form water
- Fuel cell produces electricity, heat, and water

Fuel Cell Advantages

- Minimal environmental impact
- High efficiency w/waste heat recovery
- Provides premium power and increased reliability

Emissions and Sound

- 1 ppm Nitrogen Oxides (NOx)
- 5 ppm Carbon Monoxide (CO)
- Negligible Sulfur Oxides (SOx)
- Negligible particulates
- No smoke
- Noise 62 decibels (dBA) at 30 feet

Operating Data

- Peak Output
- Annual Generation
- Capacity Factor
- Heat Ratew/Waste Heat
- Fuel Consumption
- Waste Heat

200 kW @ 480v 1,314,000 kWh 75% 9500 Btu/kWh 6000 Btu/kWh 12,483 MBtu/yr 4,599 MBtu/yr

Construction Costs

- Fuel Cell
- Installation
- HDR Engineering
- Project Management
- Financing
- TOTAL Cost

- \$ 840,000
- \$ 252,000
- \$ 85,000
- \$ 36,000
- **\$ 16,000**
- \$1,229,000

Net Cost with DOE Grant

Total Costs

\$1,229,000

DOE Grant

(\$ 200,000)

NET COST

\$1,029,000

Cost per kW

\$5,145/kW

Annual Costs

- Carrying Costs
- O&M
- Fuel
- TOTAL COST
- Waste Heat
- NET COST

- \$ 81,600 (5.5%, 20 yr)
- \$ 26,000
- \$ 37,400 (\$3/mmBtu)
- \$145,000
- **(\$14,000)**
- \$131,000

Annual Energy Cost

Annual Cost \$131,000

Generation* 1,314,000 kWh

Busbar Cost** 10 cents/kWh

* Based on 75% capacity factor** Compares with oil-fired turbine

Rate Comparison

- OPPD Average Rate
- Green Rate
- Premium Power
- TOTAL

FUEL CELL

5.5 c/kWh

4 - 6 c/kWh

0 - 1 c/kWh

9.5 - 12.5 c/kWh

10 c/kWh

Unit Trips

Performance Statistics

8-8-01 and 1-31-02

- Availability 50 %
- Capacity factor 47.9 %
- Electrical Efficiency 30 %
- Overall Efficiency 34 %

Other Issues

- N2 content of gas. 4% limit. About 6-7% most time.
- Have to dispose of inferior gas if gas is scrubbed.
- Need steady load. Follows 10kw/sec load variations well. Up and down not well.
- Optimize thermal use in zoo.

